218 research outputs found

    Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors

    Get PDF
    In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug

    Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers

    Get PDF
    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences

    Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours

    Get PDF
    BACKGROUND: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS: In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS: SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0534-2) contains supplementary material, which is available to authorized users

    COVID-19 in cancer patients on systemic anti-cancer therapies: outcomes from the CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London) cohort study

    Get PDF
    Background: Patients with cancer are hypothesised to be at increased risk of contracting COVID-19, leading to changes in treatment pathways in those treated with systemic anti-cancer treatments (SACT). This study investigated the outcomes of patients receiving SACT to assess whether they were at greater risk of contracting COVID-19 or having more severe outcomes. / Methods: Data was collected from all patients receiving SACT in two cancer centres as part of CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London). The primary outcome was the effect of clinical characteristics on the incidence and severity of COVID-19 infection in patients on SACT. We used univariable and multivariable models to analyse outcomes, adjusting for age, gender and comorbidities. / Results: A total of 2871 patients receiving SACT from 2 March to 31 May 2020 were analysed; 68 (2.4%) were diagnosed with COVID-19. Cancer patients receiving SACT were more likely to die if they contracted COVID-19 than those who did not [adjusted (adj.) odds ratio (OR) 9.84; 95% confidence interval (CI) 5.73–16.9]. Receiving chemotherapy increased the risk of developing COVID-19 (adj. OR 2.99; 95% CI = 1.72–5.21), with high dose chemotherapy significantly increasing risk (adj. OR 2.36, 95% CI 1.35–6.48), as did the presence of comorbidities (adj. OR 2.29; 95% CI 1.19–4.38), and having a respiratory or intrathoracic neoplasm (adj. OR 2.12; 95% CI 1.04–4.36). Receiving targeted treatment had a protective effect (adj. OR 0.53; 95% CI 0.30–0.95). Treatment intent (curative versus palliative), hormonal- or immunotherapy and solid versus haematological cancers had no significant effect on risk. / Conclusion: Patients on SACT are more likely to die if they contract COVID-19. Those on chemotherapy, particularly high dose chemotherapy, are more likely to contract COVID-19, while targeted treatment appears to be protective

    PANTHER: AZD8931, inhibitor of EGFR, ERBB2 and ERBB3 signalling, combined with FOLFIRI: a Phase I/II study to determine the importance of schedule and activity in colorectal cancer

    Get PDF
    BACKGROUND: Epidermal growth factor receptor (EGFR) is a therapeutic target to which HER2/HER3 activation may contribute resistance. This Phase I/II study examined the toxicity and efficacy of high-dose pulsed AZD8931, an EGFR/HER2/HER3 inhibitor, combined with chemotherapy, in metastatic colorectal cancer (CRC). METHODS: Treatment-naive patients received 4-day pulses of AZD8931 with irinotecan/5-FU (FOLFIRI) in a Phase I/II single-arm trial. Primary endpoint for Phase I was dose limiting toxicity (DLT); for Phase II best overall response. Samples were analysed for pharmacokinetics, EGFR dimers in circulating exosomes and Comet assay quantitating DNA damage. RESULTS: Eighteen patients received FOLFIRI and AZD8931. At 160 mg bd, 1 patient experienced G3 DLT; 160 mg bd was used for cohort expansion. No grade 5 adverse events (AE) reported. Seven (39%) and 1 (6%) patients experienced grade 3 and grade 4 AEs, respectively. Of 12 patients receiving 160 mg bd, best overall response rate was 25%, median PFS and OS were 8.7 and 21.2 months, respectively. A reduction in circulating HER2/3 dimer in the two responding patients after 12 weeks treatment was observed. CONCLUSIONS: The combination of pulsed high-dose AZD8931 with FOLFIRI has acceptable toxicity. Further studies of TKI sequencing may establish a role for pulsed use of such agents rather than continuous exposure. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number: NCT01862003

    HER2-HER3 heterodimer quantification by FRET-FILM and patient subclass analysis of the COIN colorectal trial

    Get PDF
    BACKGROUND: The phase 3 MRC COIN trial showed no statistically significant benefit from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line treatment of advanced colorectal cancer. This study exploits additional information on HER2-HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups of patients who had differing disease progression and treatment response. METHODS: HER2-HER3 dimerization was quantified by 'FLIM Histology' in primary tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine chemotherapy +/-cetuximab. Bayesian latent class analysis (LCA) and covariate reduction was performed to analyze the effects of HER2-HER3 dimer, RAS mutation and cetuximab on progression-free survival (PFS) and overall survival (OS). All statistical tests were two-sided. RESULTS: LCA on a cohort of 398 patients revealed two patient subclasses with differing prognoses (median OS: 1624 days [95%CI=1466-1816] vs 461 [95%CI=431-504]): Class 1 (15.6%) showed a benefit from cetuximab in OS (HR = 0.43 [95%CI=0.25-0.76]; p = 0.004). Class 2 showed an association of increased HER2-HER3 with better OS (HR = 0.64 [95%CI=0.44-0.94]; p = 0.02). A class prediction signature was formed and tested on an independent validation cohort (N = 152) validating the prognostic utility of the dimer assay. Similar subclasses were also discovered in full trial dataset (N = 1,630) based on 10 baseline clinicopathological and genetic covariates. CONCLUSIONS: Our work suggests that the combined use of HER dimer imaging and conventional mutation analyses will be able to identify a small subclass of patients (>10%) who will have better prognosis following chemotherapy. A larger prospective cohort will be required to confirm its utility in predicting the outcome of anti-EGFR treatment

    Health-related quality of life in patients with a germline BRCA mutation and metastatic pancreatic cancer receiving maintenance olaparib

    Get PDF
    BACKGROUND: Patients with metastatic pancreatic cancer (mPC) often have a detriment in health-related quality of life (HRQoL). In the randomized, double-blind, Phase III POLO trial progression-free survival was significantly longer with maintenance olaparib, a poly(ADP-ribose) polymerase inhibitor, than placebo in patients with a germline BRCA1 and/or BRCA2 mutation (gBRCAm) and mPC whose disease had not progressed during first-line platinum-based chemotherapy. The prespecified HRQoL evaluation is reported here. PATIENTS AND METHODS: Patients were randomized to receive maintenance olaparib (300 mg bid; tablets) or placebo. HRQoL was assessed using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30-item module at baseline, every 4 weeks until disease progression, at discontinuation, and 30 days after last dose. Scores ranged from 0 to 100; a ≥ 10-point change or difference between arms was considered clinically meaningful. Adjusted mean change from baseline was analysed using a mixed model for repeated measures. Time to sustained clinically meaningful deterioration (TSCMD) was analysed using a log-rank test. RESULTS: Of 154 randomized patients, 89 of 92 olaparib-arm and 58 of 62 placebo-arm patients were included in HRQoL analyses. The adjusted mean change in Global Health Status (GHS) score from baseline was less than 10 points in both arms and there was no significant between-group difference (-2.47; 95% CI - 7.27, 2.33; P=0.31). Analysis of physical functioning scores showed a significant between-group difference (-4.45 points; 95% CI - 8.75, -0.16; P=0.04). There was no difference in TSCMD for olaparib versus placebo for GHS (P=0.25; HR 0.72; 95% CI 0.41, 1.27) or physical functioning (P=0.32; HR 1.38; 95%CI 0.73, 2.63). CONCLUSIONS: HRQoL was preserved with maintenance olaparib treatment with no clinically meaningful difference compared with placebo. These results support the observed efficacy benefit of maintenance olaparib in patients with a gBRCAm and mPC. CLINCALTRIALS.GOV NUMBER: NCT02184195

    α-Fetoprotein and human chorionic gonadotrophin-β as prognostic markers in neuroendocrine tumour patients

    Get PDF
    Serum chromogranin A is the most useful general and prognostic tumour marker available for neuroendocrine tumour (NET) patients. The role of other tumour markers is less clear. In order to determine the diagnostic and prognostic value of serum α-fetoprotein (AFP) and human chorionic gonadotrophin-β (hCGβ) in NETs, a database containing biochemical, histological, and survival data on 360 NET patients was constructed. This data was statistically assessed, using Statistical Package for the Social Sciences, to determine the utility of commonly measured tumour markers with particular emphasis on AFP and hCGβ. α-Fetoprotein and hCGβ were raised in 9.5 and 12.3% of patients respectively and jointly raised in 9.1% of patients in whom it was measured. α-Fetoprotein levels associated strongly and positively with tumour grade, serum CgA and hCGβ levels, and worse survival. Human chorionic gonadotrophin-β levels also associated strongly and positively with serum CgA and AFP levels, and worsening survival. α-Fetoprotein and hCGβ are elevated in high-grade NETs, with a rapidly progressive course and poorer survival. They also correlate with chromogranin-A, which is known to be a marker of tumour burden and to have prognostic value. Thus AFP and hCGβ are clinically important in NETs and when elevated are poor prognostic markers
    corecore